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Abstract

Hard disk drive failures are one of the most common causes for service interuption in data
centers and as the demand for physical and cloud storage is increasing so is the likelyhood
of downtime caused by these failures. Recent works reveal excellent results in predicting
remaining useful life as well as classifying the current state of the drives based on S.M.A.R.T.
measurements collected over relatively short periods of time however these are achieved at
considerable cost in terms of complexity and resource usage combined with intricate methods
for balancing the datasets which, as a whole, are fairly difficult to implement in a production
environment in their current state not to mention relatively difficult to maintain and update
over time. In this report a more practical approach at identifying the current state of HDDs
is presented (by using the Random Forest algorithm for classification) as well as predicting
their RUL (by using Bidirectional LSTM for regression) with good accuracy and confidence
by eliminating the need to balance the data and by introducing an application that will ingest
the measurements, generate predictions by using a hybrid approach based on multiple trained
models, with minimal operational cost while keeping the model(s) up to date. The approach
builds on existing works in the field, does not outperform state-of-the-art methods in terms
of accuracy or confidence however it shows that the current state of HDDs can be classified
with very high accuracy (greater than 90%) and that a drive’s RUL can be predicted with up
to 90 days in advance (not found in other works) with good levels of confidence (of over 80%
R-squared)

Keywords: predicting RUL of HDDs using SMART measurements, BiLSTM on SMART data,
Random Forest classification of HDD health level
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Chapter 1

Introduction

This report looks at existing works in the field of identifying the current state of HDDs as
well as predicting their RUL by applying machine learning on datasets consisting of SMART
measurements taken at regular intervals of time and proposes an approach that is practical
from a production point of view (low complexity, low cost of ownership and high return of
investment) by means of a technical solution called pRUL.

1.1 Background

As the demand for physical and cloud storage is increasing rapidly, the number of hard disk
drives in operation is also increasing and with it so is the number of disk failures. As these
failures usually impact the quality of the storage services it is clear that they cannot be ignored
and a more proactive approach is required (waiting for a disk to fail before replacing it is more
disruptive than replacing the disk before it is about to fail).

Hard Disk Drives (or HDDs) were introduced by IBM in 1956 and since then have become
the most wide-spread technology for data storage. They remain the most popular storage
media in data centers even after the rise of the Solid State Drive (or SSD) – which no longer
has moving parts but rather chips with storage cells - because of their price to capacity and
life expectancy ratio (A. De Santo and Sperl̀ı, 2022).

With the wide spread adoption of cloud services for workloads ranging from small (ie.
individual virtual machines hosting a personal blog) to big (ie. using data science to predict or
model weather patterns based on massive data sets collected over decades) it becomes clear
that storage systems are required to scale to Petabytes and Exabytes which results in using
hundreds of thousands and millions of HDDs per data center. At this scale disk failures are
no longer rare events but rather they become the norm and with that comes the need to have
optimal strategies to deal with such failures.

It is true that data loss caused by disk failure has been reduced by the adoption of solutions
such as redundant arrays of inexpensive disks (RAID) however, when a disk that is part of a
storage array fails and is replaced, the recovery process is a lengthy one and while it is running,
additional stress is added on the remaining disks which can cause, in the best case scenario,
performance degradation of the system, and, in the worst case scenario, data loss caused by
the failure of one or more disks in the same storage array. This approach works however due
to its reactive nature it remains an unsatisfying solution (A. De Santo and Sperl̀ı, 2022).

In recent years focus has been shifted towards exploring more proactive solutions such
as predicting when a HDD is close to failure such that the maintenance window required to
replace it can be scheduled in advance to reduce the impact on the overall performance of the
system (A. De Santo and Sperl̀ı, 2022) (Lihan Hu, 2020).

1



CHAPTER 1. INTRODUCTION 2

Due to shifts towards predictive systems, machine learning approaches have been gaining
increasing popularity - especially the ones using models trained on S.M.A.R.T. data - by relying
on internal attributes of HDDs as indicators of drive health. (A. De Santo and Sperl̀ı, 2022).

1.2 Problem statement

Two of the problems that sit at the core of this report, predicting the current state of a
HDD (one) and predicting the remaining useful life of a HDD(two), have been addressed in
previous papers, with a few more recent ones showing excellent results in specific contexts
(and introducing state-of-the-art methods which achieve accuracy and confidence levels of
over 95%) however before these approaches can be used in a real production environment
one crucial aspect needs to be addressed and that is practicality (the third problem that is
addressed in this report). Any business that needs to operate physical servers in order to run
workloads to serve their customers must at the very least minimize the risk of data loss if
not eliminate it completely and do so while balancing costs with income and with the prices
presented to the end users otherwise the business becomes unsustainable. In this context a
solution that requires hiring data scientists whenever a business wants to adopt a predictive
approach for HDD failure, purchasing hardware for this purpose as well as collecting data from
their infrastructure over long periods of time is costly and becomes unappealing early on.

1.3 Aims and objectives

The proposed research project aims to build a practical application for predicting the current
state of disk drives (a first health evaluation) and their RUL using previously published state-
of-the-art ML methods trained on publicly available datasets (Backblaze) which will keep
itself up-to-date by continuously ingesting new S.M.A.R.T. measurements from monitored
drives (never before seen HDDs) with the possible extension to SSDs and NVMEs. The first
objective is to prepare a diverse enough dataset on which to train the algorithm. The data
will be qualitative and sourced from public data sources afterwards it will be processed as
little as possible (by eliminating invalid entries and selecting the most relevant attributes).
The second objective (which is also the main one) is to identify the best technique(s) and
tool(s) for handling the data and training the model (which will use either LSTM or a mix of
algorithms depending on their overall accuracy) for predicting RUL. Another objective (third)
is to measure the efficiency and cost of the chosen Machine Learning algorithm(s) and compare
with other state-of-the-art models and techniques. The last objective (fourth) is the delivery
of a practical application that can be used in a production environment to predict RUL with
high accuracy in a cost effective manner and with little to no maintenance effort or operational
cost. At the very least, this research project will contribute by reporting the computational
and time costs of training and applying the Machine Learning algorithms on this particular
type of dataset which will allow repurposing them in the future to other datasets. The main
contribution of this project, if successful, will be the practical application.

1.4 Solution approach

The methodology to be adopted is a quantitative empirical experiment which will follow the
Extract Clean Transform (ECT) structure: (a) Extract the data from the data sources (b)
Clean the data, highlight outliers and remove them from the datasets or reweigh them (c)
Create a training, testing and validation dataset (70/30/0 for classification and 35/30/35 for
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regression) (d) Train the algorithm(s) on the test data (e) Evaluate the algorithms and select
the most effective one or a combination between them (f) Compare the selected algorithm(s)
with existing results from other papers (g) Measure computational cost of each step After the
training dataset has been prepared, a number of Machine Learning method(s) will be trained
(with BiLSTM being the main candidate) and compared from a performance and accuracy
point of view while at the same time looking at if and how they can handle new data as well as
keeping themselves up-to-date training wise while ingesting streams of new data. The success
of the Machine Learning algorithm will be determined by whether it is able to predict RUL
with high confidence on the test dataset combined with its ability to maintain high accuracy
over time (when predictions start being made by taking into account information that was
not used in the initial training but rather information that the algorithm ingested over time
and used to train itself) together with the operational cost required for the exercise (compute
resources needed and time it takes to train and make predictions, engineering time required
for operating the application).

1.5 Summary of contributions and achievements

In this work lightweight/minimal methods for data standardization, normalization, classification
and RUL prediction are proposed for working with highly imabalanced S.M.A.R.T. measurements
using a Random Forrest classifier to predict the current health of HDDs as well as a BiLSTM
network to predict the RUL of HDDs over multiple days of look-back periods in the form of a
technical solution / application called pRUL that requires minimal operational cost to provide
current status and remaining useful life predictions for monitored HDDs with good accuracy
and confidence which makes it a practical solution for tackling the issue at hand.

1.6 Organization of the report

This report is organised into seven chapters. Chapter 2, details the literature review of
this project. The following chapter, Methodology, covers how data preprocessing and model
training were performed together with the aproach taken for building the technical solution
(pRUL). After that, in chapter 4, findings when experimenting with the RF and BiLSTM
models are presented both on the complete dataset as well as on a subset of the dataset
(experimenting on specific drive models) as well as the pRUL technical solution. Later on, in
chapter 5, Discussion and Analysis, more details are presented relative to the results obtained
together with their significance. In chapter 6 conclusions together with future work are covered
and this report is ended with chapter 7, Reflection, where a discussion about what was learned
in the process of creating this thesis is found.



Chapter 2

Literature Review

Below follows a presentation of several state-of-the-art approaches to predicting RUL either
as a classification problem or as a regression problem each producing very good results.

2.1 State-of-the-art works in the field of research.

Lihan Hu (2020) proposes a model based on LSTM to predict disk failure in a given interval
(30 days before the actual failure) using sliding windows and also experiments with Random
Forest as a comparison (approached as a regression problem).

A. De Santo and Sperl̀ı (2022) follows recent research in predictive maintenance, provides
an overview of State-of-the-Art approaches and presents a deep learning approach to address
data sparsity, need for domain knowledge and feature engineering to predict RUL of a HDD by
identifying specific health conditions on the basis of S.M.A.R.T. attributes values using three
main steps: defining the health degree for each HDD, extracting sequences in a specific time
window for each hard disk and then assessing the health status through LSTM by associating
a health level to each temporal sequence (approached as a classification problem).

A multi-instance LSTM network for failure detection of hard disk drives [3] (2020) proposes
a fault prediction method based on multi-instance LSTM neural network where the data in
the entire degradation process is regarded as a sample then using the LSTM network the
time characteristics of the data are mined and finally a multi-instance learning method is
used to treat the degradation characteristics of the full-life data as a data bag and divide it
into multiple instances thus the entire life cycle data is used for HDD abnormality detection
(approached as a classification problem).

A. Coursey and Sengupta (2021) proposes methods for data standardization, normalization
and RUL prediction using Bidirectional LSTM network with multiple days of look- back period
considering S.M.A.R.T. attributes highly correlated to failure and builds a prediction pipeline
that takes into consideration the long-term temporal relations in the failure data, shows that
the method is superior when compared to vanilla LSTM and establishes a baseline using
Random Forest (approached as a regression problem).

In F. D. S. Lima and Machado (2018) paper the authors propose, perform and evaluate
CNNs and LSTMs for RUL estimation (approached as a regression problem) and compare
them with an Elman Recurrent Neural Network.

F. D. d. S. Lima and d. C. Machado (2017) proposes an LSTM model to predict RUL
and compares it with Elman Recurrent Neural Network as well as a Random Forest model
(approached as a classification problem). In S. Basak and Dubey (2019) a LSTM model
is used to predict RUL with good accuracy (approached as a classification problem) A. Bai
and Yang (2022) proposes an attention-based BiLSTM with differential features framework

4
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is proposed to further improve predicting RUL for HDDs by assigning different weights for
different features at different time steps (approached as a classification problem).

Many of the works mentioned above use Random Forest as a baseline for comparing
accuracy as it is acknowledged as being very good at classifying drives based on S.M.A.R.T.
measurements and all attempt to predict RUL by using LSTM (either single or multilayered,
vanilla, Bidirectional or attention based). In all cases the authors select one particular drive
model (Seagate ST4000DM000) due to the fact that the Backblaze (2023) dataset contains
a good amount of measurements for many disk drives of this particular model and perform
feature selection, normalization and standardization on the dataset due to its imbalanced
nature (in terms of numbers, there is very little data that indicates a bad condition vs a good
condition, which is to be expected given that drives will report the same measurements over
a period of days / weeks / months before a change in attribute values occurs making it very
hard to predict RUL, and that the lifespan of the drives themselves is very long - usually
measured in years - which results in massive amounts of data to process if one were to try to
work with the complete dataset).

Some of the referenced works above, the ones that approach RUL prediction as a classification
problem (for example where remaining useful life of drives is flagged as ”alert” if less than 15
days before failure, ”warning” if RUL is between 15 and 30 days, etc), achieve extremely high
accuracy levels (90% - 95%) while others approaching it as a regression problem (where they
try to accurately predict the actual RUL measured in number of days before failure ) achieve
very good confidence levels measured in very small R-squared, MSE and MAE values.

2.2 The project in the context of existing literature and products.

There are many products / tools available that are used for monitoring the health of HDDs
by reporting the actual S.M.A.R.T. attribute values and classifying the health of the disks
based on the specifications from the manufacturers and even triggering alerts when certain
thresholds are exceeded however this has been shown to have an accuracy level of less than
10% (A multi-instance LSTM network for failure detection of hard disk drives [3], 2020).

To address this problem many works have been published showing varying levels of accuracy
when predicting the state and RUL of HDDs using various ML models trained on S.M.A.R.T.
measurements however an actual product / tool that uses this approach with a high enough
degree of accuracy has yet to be made publicly available for the general public be that for
small or large scale environments.

A tool called ”DA Drive Analyzer” (QNAP, 2023) that uses ”AI” to predict failure and
minimize downtime exists however it is vendor specific and targetted at NAS users thus not
generally available to be used on for example personal laptops or servers in datacenters.

2.3 Review relevance analysis.

The papers mentioned above are the most relevant for this work as they cover state-of-
the-art techniques for predicting the RUL of HDDs as well as to classify their current state
(as ”good”, ”bad”, ”fair”, etc) depending on S.M.A.R.T. measurements collected regularly
throughout their lifespan. They show the best results that can be obtained and in what
context as well as the gaps that need filling before these approaches can become available as
”simple”, ”practical” products / tools for anyone to use.
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2.4 Critique of existing work.

While researching state-of-the-art methods that are able to predict HDD failure it was discovered
that many works show excellent results when classifying HDDs as ”good” and ”bad”/”prefailure”
or as ”in good working order” or ”warning” or ”about to fail” as well as when predicting their
remaining useful life however this is achieved based on limited diversity (usually one disk
model is selected due to the quantity of data and to the severely imabalanced nature of the
selected dataset not to mention due to the lack of public datasets that contain this sort of
measurements).

Another find is the fact that in order to achieve high accuracy and confidence levels,
careful planning and complex work is required to be performed on the datasets themselves in
order for them to be used for training various prediction models which in general takes a fair
amount of time and effort.

On top of the above findings, there is very little mention of keeping the models up-to-date
(such that as more data is collected and the dataset evolves so should the trained models
used to generate the predictions).

This report, together with the technical solution (pRUL), covers all of the above aspects
by:

� experimenting with training the models on data coming from one specific model and
comparing performance when predicting failure for drives of different models

� experimenting with training a prediction model using the complete dataset (trained
using measurements from all drive models)

� experimenting with building ML models for each HDD model for improved accuracy
(which has been mentioned and suggested in previous publications in the field)

� collecting information from the HDDs that are being monitored by the pRUL agent,
sending the measurements to the main server, storing and using the measurements
to update the ML model at the right time and then generating predictions using the
updated model

� by creating a product / tool that anyone can use, the solution can collect S.M.A.R.T.
measurements from a much larger pool of devices (with owner’s approval) thus making
the dataset more robust which will also allow for training better prediction models and
extend to other types of disk drives (SSDs and NVMEs)

2.5 Summary

In this chapter the review of the state-of-the-art literature in the field was covered, a description
of how the review is relevant to this report was presented, gaps in the existing literature were
identified and a listing of how this work will fill them was provided.



Chapter 3

Methodology

Given that the aim of this report is to predict the remaining useful life of hard drives used in
both small and large scale environments (from a personal laptop to a cloud service provider)
and do so in a practical way, the approach has to take into account existing works in the field,
improvements that can be made without having to reinvent the wheel, deliver on the promise
in a cost effective and timely manner with the highest precision and confidence possible while
at the same time be as easy to use and operate / maintain as possible. With this in mind
the idea to create a technical solution (called pRUL) came to be that would have 3 main
components:

� (agent) an agent application that is to be installed and configured on the systems where
the HDDs are in use (that will support a wide range of operating systems),

� (webapi) a web API service that acts as a collector for S.M.A.R.T. measurements sent
by the agent as well as an oracle that provides predictions of the state and RUL of the
disk drives when requested by the agent application and

� (oracle) an update service that is used to keep the prediction models up-to-date by
constantly training them on new data as it becomes available. Depending on the size
of the infrastructure, the users may decide to deploy the complete suite in their own
infrastructure (in which case they become responsible for operating and maintaining the
technical solution) or decide to install only the agent on the nodes they want monitored
(in which case they will rely on a third party for the operational and maintenance tasks
associated with the platform).

Considering that when deploying the pRUL solution there is no historical data for the
HDDs the users want to monitor, an argument can be made that a two step approach is
needed as follows:

1. an initial assessment of the health condition is performed using a classification model
based on Random Forest that will report the state as good (if a drive have more than
a set threshold of 30 or 60 or 90 days before failure) or prefail if (the drive has fewer
days remaining than the set threshold before failure) after which

2. as measurements start to be collected on a daily basis and once enough measurements
have been collected for each of the disks that are being monitored a regression model
based on BiLSTM will be used to predict the actual number of days that the drive has
before failing.

7
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Due to time constraints, the first version of the application is a minimum viable product
/ proof of concept at best so it focuses on the immediate need which is to flag disks which
look like they are about to fail in the next 14 / 30 / 60 / 90 days and estimate with a good
level of confidence how many days are left before the actual failure however, as you will see
later on in this report, future versions of the technical solution will have the ability to assess
the health level relative to more classes as well as predict the RUL with more time in advance
which will give an even longer window to plan the maintenance (required to replace the drives
that are going to fail);

In the next sections a description in more detail of each component of the pRUL solution
follows.

3.0.1 Data Preprocessing

In what follows a description of how data preprocessing was approached is presented together
with some information about how S.M.A.R.T. works followed by a few details about the
dataset selected for this work.

S.M.A.R.T.

S.M.A.R.T. stands for Self-Monitoring, Analysis, and Reporting Technology and is a technology
found in disk drives (HDDs, SSDs and NVME SSDs). It is independed from the Operating
System, BIOS, or other hardware as it is built into the drives themselves. SMART was
invented because something was needed that could monitor the health state of disk drives and
its purpose is to report if a drive is about to fail.

The Backblaze dataset

Backblaze (2023) is a company that provides Cloud Storage. The company was founded in
2007 and since 2013 it started collecting daily S.M.A.R.T. measurements from each of the
drives used in their datacenters and releasing quartely archives (containing CSV files with
daily measurements) on their website. Together with the data they also provide statistics and
insights based on the hard drives in their datacenters (Backblaze, 2016).

The Backblaze dataset (up to and including q4 2022) contains daily measurements collected
from 335282 hard disks. Each entry consists of information about the hard drive (model, serial
number, capacity in bytes) together with raw and normalized values for 90 SMART attributes
and an added feature called failure which if set to 0 it represents that the drive is working and
if set to 1 it represents that either the drive has failed (or in some cases is about to fail as it
is causing issues) and has been removed by Backblaze technicians from the live environment.

Data Collection

At first a MySQL database was created with one table (called drive stats) with the intention
of importing programmatically all the Backblaze data into it which was successfull however,
the resulting database (with a size of apx 240G and containing over 350 million entries ...
367203010 to be exact) was slow and impractical to work with so a decision was made to split
it into multiple smaller databases (one for each quarter of every year resulting in 40 databases
named using the convention backblaze year quarter ex. backblaze 2019 Q1).

Upon an initial inspection of the data a discovery was made and that is that the dataset
contained measurements for 90 attributes (which is justified by the fact that S.M.A.R.T.
attributes are vendor and model specific - also not all attributes apply to all hard drives, some
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apply to SSDs others apply to HDDs) and given that the goal set in this report is to build a
model that predicts failure foing forward all work will be done relative to drives which have
failed (the failure attribute is set to 1 at some point in time) so a new database was created
(called backblaze ml full again with one table named drive stats) where all data collected from
the drives which have failed was imported programmatically.

This had the effect of reducing the total number of entries in the database to close to
15.5 million entries (15653251 to be precise, corresponding to 17732 HDDs which have failed
over time) and the size on disk of the database to apx 8G which made it practical to work
with.

Feature Selection

The feature selection process was performed over a number of steps which resulted in the
creation of a separate database called backblaze ml (again containing only one table called
drive stats) holding only the data found to be relevant for this work.

At first all columns were removed that corresponded to SMART attributes which had no
values collected after which analysis was performed to identify which of the attributes are
indicators of failure and which are indicators of performance or simply counters (for example
attribute 195 - Hardware ECC Recovered - was flagged as an indicator of wear/performance
as it simply counting the number of errors that were corrected - the higher the number the
lower the performance of the drive however the drive is still operational, similar for 194 -
Temperature Celsius - as in a controlled environment such as a datacenter the temperature
will fluctuate very little, similar for 183 - SATA Downshifts - which is actually an indicator
of problems with the SATA cable rather than with the drive itself) and eliminate all that
were identified as not relevant for failure. After this step the resulting database contained
measurements for the following SMART attributes:

� 5 - Reallocated Sector Count (BB)

� 187 - Reported Uncerrectable Errors (BB)

� 188 - Command Timeout (BB)

� 189 - High Fly Writes

� 196 - Reallocation Event Count

� 197 - Current Pending Sector Count (BB)

� 198 - Uncorrectable Sector Count (BB)

noting that 5 of the attributes were also selected by Backblaze as indicators of failure during
their analysis (Backblaze, 2016).

After applying the Pearson correlation between the selected attributes a strong correlation
was identified between 197 and 198 and, unlike Backblaze (who decided to keep both for their
model), for this report, 197 was kept due to the fact that more drives report it and that there
are more measurements for it present in the dataset.

Another interesting fact discovered during this stage was that some entries in the dataset
came from SSDs which unfortunately had to be filtered out as they are not in scope for this
report, not to mention they are not enough to use as a dataset for traininig a separate model
for SSDs).

Closer inspection of the dataset revealed that the it contained raw measurements collected
for 6 attributes (out of the 255 possible) up to March 2014 after which more started being
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Figure 3.1: Pearson Correlation.

collected (24 features for which both raw and normalized values started being reported) and
in this context, given the SMART attribute selection above, measurements collected before
said date were ignored.

One last thing to note here is that the SMART attributes were chosen based on their
relationship with failure (how relevant they are in identifying if a disk should be marked as
good or in a pre-fail/failed state) and not taking into account their evolution over time. In
other words the feature selection work presented so far was done in the context of the first
objective - the initial health evaluation of a HDD.

For the second objective - where the aim is to predict the RUL of the HDDs (the
number of days before the actual failure) - when experimenting with the selected attributes
it was observed that they are not good indicators of failure over time - in other words,
when experimented with training several regression models using the selection of attributes
mentioned above, the trained models did not produce good results. After revisiting the
literature it was decided to select the same SMART attributes as A. De Santo and Sperl̀ı
(2022):

� 1 - Read Error Rate

� 3 - SpinUp Time

� 5 - Reallocated Sector Count (BB)

� 7 - Seek Error Rate

� 9 - Power-On Hours



CHAPTER 3. METHODOLOGY 11

� 187 - Reported Uncerrectable Errors (BB)

� 189 - High Fly Writes

� 194 - Temperature Celsius

� 197 - Current Pending Sector Count (BB)

(and used their normalized values for training the regression models as will be seeb later on)
because they are better indicators of wear over time and lead to improved performance of the
regression models.

Data Standardization

For the first objective no standardization method was used. After cleaning the data (replacing
missing/Nan values with 0) the raw data was fed to the classification model based on Random
Forest ( as it can handle outliers ) and work with it without further transformations not to
mention from a practical point of view it keeps things simple. For the second objective
MinMaxScaler was used on the normalized values of the selected SMART attributes to scale
them to the same interval [-1, 1] as this improves the time it takes to train the model.

3.0.2 Model Training

In this section Random Forest, LSTM and BiLSTM are introduced and aspects regarding
training the models as well as testing and validation of the models are covered.

Random Forest

Random Forest is a commonly-used machine learning algorithm which combines the output
of multiple decision trees to reach a result. RF algorithms have three main hyperparameters
which need to be set before training: node size, the number of trees and the number of
features sampled. From there the random forest classifier can be used to solve regression and
classification problems. For classification tasks, the output of the random forest is the class
selected by most trees. For regression tasks, the mean or average prediction of the individual
trees is returned.

Figure 3.2: Random Forest (Wikipedia).
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Health Assessment through Random Forest

As mentioned before, the first objective of this report is to provide an initial health assessment
of a HDD by creating a classification model based on the Random Forest algorithm that looks
at the state of a drive at a point in time (the raw values of the six SMART attributes of
interest) and classifies its state as either good or prefailure. To achieve this, a model was
trained on the dataset containing measurements from all the drives that have failed as follows.

Using the failure attribute present in the dataset together with the date of each measurement
for each drive a new attribute called prefailure was created which takes either 0 or 1 as a value
indicating if a drive is in good (0) or prefailure (1) state. The value of the prefailure attribute
is set to 1 for all measurements collected within the last 14 / 30 / 60 / 90 days before the
actual failure (the last entry for each drive, when the drive has failed has been removed from
the dataset as the aim is to give the user a reasonable window of time for the maintenance to
occur not inform the user that the drive has failed). The dataset is then split into 70% training
and 30% testing data and the RF models are trained. After training the model its accuracy,
precision, recall and f1 scores are measured against the test data and compared. At first
experiments were performed using this model on the data collected for a specific HDD model
(Seagate 10TB ST10000NM0086) afterwards the model was trained on the whole dataset.

LSTM and BiLSTM

Long short-term memory (LSTM) network is a recurrent neural network (RNN), aimed at
dealing with the vanishing gradient problem present in traditional RNNs. LSTM introduces
a cell state that contains a series of gates in order to gain more control over the information
that is retained between cells. LSTM consists of three gates: forget, input and output. The
combination of these allows the LSTM cells to extend thir short term memory, keeping any
information needed to go through the entirety of the learning process. Each gate contains
neural networks that serve a specific purpose and contain activation functions such as sigmoid.
The forget gate takes in information from the previous cell and current input to decide what
to keep or forget. Whatever information is kept goes through the input gate. This determines
what values will be updated in the cell. The tanh function is applied on the cell state and
current input for regulation. The cell state is then updated according to the combination of
forget and input gates. Using the current cell gates and state, the output gate decides what
to pass on to the next cell. A diagram outlining the LSTM cell is shown in Fig. 3.3

Numerous variants of LSTMs have been introduced to improve performance one of which
is the Bidirectional LSTM or BiLSTM that is used in this report. A bidirectional LSTM is a
variant of the LSTM that consists of two LSTM layers which run at the same time. One runs
on the input sequence in the forward direction and the other runs backwards on the input
sequence. This way LSTM runs in both directions. In the context of this thesis one could
think of one direction of the LSTM running on the sequence of hard drive data leading up to
failure and another running on the sequence backwards from failure. This allows the LSTM to
better learn the relationship between the features and the remaining useful life with a simple,
low-cost architecture change which is the reason behind choosing BiLSTM to determine the
RUL of HDDs.

Remaining Useful Life through BiLSTM

The second objective of this report is to predict the actual number of days before failure
by creating a regression model based on the BiLSTM algorithm that looks at a series of
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Figure 3.3: Structure of LSTM cell.

measurements (the normalized values of the nine SMART attributes of interest) over a number
of days (14 / 30 / 60 / 90) before the actual failure.

To achive this, a model using three BiLSTM layers (the first with 128 units, the second
with 64 units and the third with 32 units) followed by three Dense layers (the first with 96
units, the second with 128 units and the third with 1 unit) was trained on the dataset as
follows:

� at step1 MinMaxScaler was applied on the normalized values (to scale all values to
interval [-1, 1])

� at step2 the dataset was transformed such that for each individual disk at least 30
consecutive entries of 14 / 30 / 60 / 90 day lookback windows exist together with the
actual RUL

� at step3 the dataset is split into 70% train and 30% test with the train data further
split 50/50 into train/validate resulting in an actual split of the original dataset of 35%
train, 35% validate and 30% test

� at step4 the model is trained on the train set in batches of 500 using MSE as the loss
function to check against the validate set over 150 epochs - this step is repeated several
times until the loss function shows signs of overfitting or signs that the model is not
learning anymore

� and finally at step5 the model is trained on the validate set in batches of 500 over 25
epochs

Because this is a regression model its performance is measured using MAE, MSE, RMSE
and R-squared as indicators. As before, at first experiments were performed by using this model
on the data collected for a specific HDD model (Seagate 4TB ST4000DM000) afterwards the
model was trained on the whole dataset. As a comparison this model was also trained on the
exact same dataset used by A. De Santo and Sperl̀ı (2022), which is publicly available, as well
as on a variation of the dataset based on the local database generated without applying the
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balacing step (which was to replicate the sequences belonging to the minority classes), used
in the reference paper, and compared results.

3.0.3 pRUL

In this section the technical solution used as the practical application of this report - called
pRUL - is covered which is the last objective as mentioned in Section 1.3 together with its
three main components.

The agent

The pRUL agent is a minimal application that can run in a variety of forms (such as a desktop
application, a background service as well as a cron/task scheduler job). Its purpose is to
collect information from the target machine about its HDDs (as specified in its configuration
file) and send it to the web API service and retrieve predictions with regards to the state and
RUL of each of the monitored HDDs. In theory the agent could generate predictions locally
provided it comes with the trained models however this is impractical at scale as it would use
too many resources on the target machine.

At the time of writing this thesis the agent comes in one flavor: a python script together
with a configuration file that can either be executed manually or as a cron job on Unix based
systems. To configure and use the agent the user must first specify the authentication details
then the path to the smartctl command (if not standard) together with the path to the disk
drive ( and the driver if using a RAID controller such that smartctl can retrieve the SMART
data) after that it is up to the user to configure it as a daily cron job or manually run the
script every day.

The web API

The pRUL web API is, at its core, a collector for S.M.A.R.T. measurements in that once
received it stores them in the database. Upon receiving the measurements it then relies on
the oracle service to provide predictions which once available it relays to the agent. For
practical reasons the API is written in PHP and uses a MySQL database to store the data
and has a minimal set of requirements with respect to libraries and hardware resources (it will
work on any shared hosting provider, container or entry level virtual machine ). Due to its
design it can scale from running on a single machine (for small deployments) to a cluster of
machines (for large deployments).

The oracle update engine

The pRUL update and prediction service, also called the oracle, is used to keep the prediction
models up-to-date by constantly training them on new data as it becomes available as well as
to generate predictions on the data collected by the agent. The predictions are saved in the
database so that the API service can access and send them to the agents.

For practical reasons the oracle service is written in python (because of its diversity of
machine learning libraries ) and connects to the same database as the API service to load the
SMART data which it needs to generate predictions.

Due to its design it can scale from running on a single machine (for small deployments)
to a cluster of machines (for large deployments) and requires a fair amount of resources for
generating predictions (a minimum of 8 CPU cores and 32G RAM is recommended).



CHAPTER 3. METHODOLOGY 15

As is expected, for updating the models, depending on the size of the dataset, a minimum
of 16 CPU cores and 128G RAM is recommended (this is the hardware specification used
during the development phase that worked best). As soon as a new model is available it is
immediately used to generate predictions (no human intervention is required).

As stated before, the oracle service uses two machine learning models for generating
predictions - the first one is used to identify if a drive is prefail state (with failure predicted in
the next 90/60/30/15 days) and if so the second one is used to predict the number of days
left before the actual failure (RUL). Unfortunately RF does not support incremental training
meaning that keeping the classification model up-to-date requires retraining the model on the
whole dataset every so often (when its accuracy drops below a specific threshold) however
BiLSTM does so in this context whenever enough new data becomes available the model can
be updated by fitting the existing model on the new data.

At the time of writing this thesis the oracle service uses the CPU for training the models
however in the future it will be extended to use GPUs as alternative if available.

3.1 Summary

In this chapter detailed information was provided about the approach to predicting the health
state and RUL of HDDs, what this report means by practical, how data preprocessing, data
collection, feature selection and data standardization were approached, a description of what
SMART for HDDs is, an introduction of the machine learning algorithms used for the models
presented in this report was provided together with their purpose in context of this work and
the high level specifications of the pRUL technical solution, with its three components (agent,
web api, oracle), were presented.



Chapter 4

Results

In this thesis the aim is to assess the current health state of HDDs and predict their RUL by
using state-of-the-art approaches and do so in a practical way then discuss and compare results
with other works in the field. Random Forest was chosen for training a classification model
that would provide the initial health evaluation of a HDD and BiLSTM (a flavor of LSTM)
for training a regression model that would predict the RUL of a HDD and with these models
a technical solution called pRUL was built that can be used in live/production environments
for predicting disk failures.

4.1 Health Assessment through Random Forest

As described in Section 3.0.2, the RF model was trained to predict the prefailure state of HDDs
with 14 / 30 / 60 / 90 days before actual failure on the complete dataset and experiments
were performend with training the model on a specific disk model and checked its performance
against a related but different disk model.

Table 4.1: Random Forest model predicting prefailure state

Data Days Accuracy Precision Recall F1 Notes

All 14 0.986
¯

0.795 0.193 0.311 -
ST10000NM0086 14 0.953 0.142 0.159 0.150 train 100% self, acc on ST12000NM
All 30 0.971 0.835 0.209 0.335 -
ST10000NM0086 30 0.996

¯
0.877
¯

0.716
¯

0.787
¯

train/test 80/20, acc on self
ST10000NM0086 30 0.953 0.142 0.159 0.150 train/test 80/20, acc on ST12000NM
All 60 0.944 0.861

¯
0.213 0.341 -

All 90 0.918 0.851 0.220
¯

0.350
¯

-

As can be seen in Table 4.1, the best accuracy (98.6%) was obtained when trained to
identify prefailure at 14 days before actual failure (with a precision of 79.5%) however, the
best precision (86.1%) was obtained when training the model to identify prefailure at 60 days
before failure (with an accuracy of 94.4% ).

A few experiments we also performed to determine if a model cound be trained on
measurements collected from a specific HDD model and then use that model to predict
failure for similar drives and in terms of accuracy the model performed well however in terms
of precision it performed poorly (¡15%).

16
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4.2 Remaining Useful Life through BiLSTM - wip

The BiLSTM model, as mentioned in Section 3.0.2, was trained to predict RUL using 30 x 14
/ 30 / 60 / 90 day lookback windows and as can be seen in table 4.2 the best results were
obtained when training on 30 x 90 day lookback windows for the complete dataset and on 30
x 60 day lookback windows for the ST4000DM000 dataset.

Table 4.2: BiLSTM model predicting RUL

Data Windows MAE MSE RMSE R-Squared

All 30 x 14 3.941 29.394 5.422 0.655
ST4000DM000 30 x 14 4.714 40.971 6.401 0.519
All 30 x 30 - - - -
ST4000DM000 30 x 30 - - - -
All 30 x 60 3.563 24.018 4.901 0.718
ST4000DM000 30 x 60 2.431

¯
12.290

¯
3.506
¯

0.856
¯

All 30 x 90 2.947
¯

16.863
¯

4.106
¯

0.802
¯

ST4000DM000 30 x 90 2.772 13.994 3.74 0.836

An experiment was also performed where the model presented in this report was trained
on the dataset used by A. De Santo and Sperl̀ı (2022) and it results were recorded in table
4.3.

Table 4.3: BiLSTM model on A. De Santo and Sperl̀ı (2022) dataset to predict
RUL

Windows MAE MSE RMSE R-Squared

30 x 14 0.915 4.929 2.220 0.938

4.3 pRUL

From a practical point of view, the problem of identifying the current health state of a HDD
together with predicting when it will fail is difficult to approach. To address it the technical
solution - called pRUL - was created which solves it by using the two machine learning models
described in this report as follows.

When a measurement is received from the agent it is first fed to the RF model which will
identify if the drive is in a prefail state at 90 / 60 / 30 / 14 days (will check against all) and
if the HDD has a positive result in one or more of the four time frames then the worst case
scenario prediction is returned to the pRUL agent to inform the user (if for example prefailure
is flagged at 60 and 30 days then the user will be informed that a drive will fail in the next 30
days rather than in the next 60). If the drive has been monitored for long enough (in other
words, if enough measurements have been collected such that the oracle service can build a
lookback window of 14 / 30 / 60 / 90 days) matching the corresponding windows flagged by
the RF model they will then be fed to the BiLSTM model to generate predictions specific to
each matching lookback window which will be sent to the agent to then report back to the
user. Building on the previous example, once at least 30 days worth of measurements have
been collected BiLSTM can then be used to predict RUL, once 60 days worth of measurements
have been collected then predictions cab be issued for both 30 and 60 day lookback windows
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and again return the worst case scenario value to the user - if for example the 30 day lookback
model returns 28 and the 60 day lookback model returns 26 then the application return 26
days as the RUL to the user.

Algorithm 1 illustrates the logic described above which, as can be seen, is fairly simple
(mostly if statements).

In this way a notification can be sent to the user that a disk is about to fail in the next
14 / 30 / 60 / 90 days together with an approximation of the actual number of days the disk
has left before failure. The user will then be able to act on this information by replacing the
disk drive at a suitable time or disregard the warning and wait until the drive actually fails
before replacing it. Either way, the user is informed about the state of the HDD and can take
measures to mitigate the impact of the approaching disk failure by for example making sure
there are enough spares in stock.

4.4 Summary

I this chapter the results that were obtained by applying the methodology described in the
previous chapter when training the two models (Random Forest for classification and ByLSTM
for regression) on both the complete dataset as well as on a subset of it that contains drives of
a particular model (ST10000NM0086 in RF case and ST4000DM000 in BiLSTM case) were
presented together with the pRUL technical solution which is the result of creating a software
application that aims to use the two ML models to classify the state of HDDs and predict
their RUL in days.
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Algorithm 1 Algorithm used by the oracle service to return health state and RUL of HDDs

Input: [x, . . . , z] = [(x1, x2, . . . , xN ), . . . , (z1, z2, . . . , zN )] ▷ takes multiple sets of
measurements over time

Output: prefailure, rul ▷ returns the health state and rul

1: function predict([x, . . . , z])
2: prefailure ← 0 ▷ set prefailure to 0 meaning drive is good
3: rul ← NULL ▷ no prediction for RUL
4: healthState ← identifyState([x, . . . , z])
5: if healthState[failure in 90] == 1 then
6: prefailure ← 90
7: predictedrul ← predict rul 90([x, . . . , z]) ▷ model is called to predict rul with

90 days lookback windows
8: if ((predictedrul! = NULL)and(rul > predictedrul))or(rul == NULL) then
9: rul ← predictedrul ▷ set rul to the predicted value

10: end if
11: end if

. . . ▷ repeat the if statments for 60 and 30 day predictions
12: if healthState[failure in 14] == 1 then
13: prefailure ← 14
14: predictedrul ← predict rul 14([x, . . . , z]) ▷ model is called to predict rul with

14 days lookback windows
15: if ((predictedrul! = NULL)and(rul > predictedrul))or(rul == NULL) then
16: rul ← predictedrul
17: end if
18: end if
19: return (prefailure, rul)
20: end function
21: function identifyState([x, . . . , z])
22: prefailure ← {failure in 14 : 0, failure in 30 : 0, failure in 60 :

0, failure in 90 : 0}
23: if predict state 90([x, . . . , z]) == 1 then ▷ model is called to predict prefailure

within 90 days
24: prefailure[failure in 90] ← 1
25: end if

. . . ▷ repeat the if statments for 60 and 30 day predictions
26: if predict state 14([x, . . . , z]) == 1 then ▷ model is called to predict prefailure

within 14 days
27: prefailure[failure in 14] ← 1
28: end if
29: return prefailure
30: end function
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Discussion and Analysis

In this chapter an evaluation and analysis will be provided based on the results presented
above their implications together with several conclusions will be brought forward.

5.1 Deep dive into the results

5.1.1 Random Forest model

Looking at the results obtained for the classification model based on the Random Forest
algorithm, table 4.1, an observation can be made that the best accuracy is obtained when
training the model to predict the prefailure state at 14 days before actual failure and that
the best precision is obtained when training the model to identify prefailure at 60 days before
failure with the second best precision value being obtained at 90 days prefailure. An interesting
observation is that the accuracy of the model is above 90% in all cases and that it seems
to go down the further away from failure the prefailure state is marked. Based on these
observation a statement can be made that the ideal number of days before failure used to
indicate prefailure for a HDD should be close to if not equal to 60 days if the goal is to have
both high performance and accuracy.

The low values for the recall and F1 scores are the effect of the dataset being highly
imbalanced (as it contains mostly entries indicating a good HDD state - years worth of daily
measurements - and a few entries indicating a drive in prefailure state - coresponding to the
number of days before failure flagged as the prefailure state used in training the model) and
of the decision to not use any rebalancing techniques on it due to practical reasons mentioned
before in this report.

The extra experiments performed with training the RF model on a particular HDD model
and then using it to predict prefailure state on a similar/related but different model produced
very good results with respect to accuracy but in terms of precision they performed poorly. As
can be seen, these extra experiments confirm a suspicion which is that the best way to classify
the health of a drive is to train a machine learning model using disks of same make and model
because SMART attributes are vendor and disk specific (some are common across multiple
models from same manufacturer and sometimes even across multiple manufacturers but in
general they are not, and even when they are common across model and/or manufactures
they report values measured using different units or differently altogether).

Another interesting observation can be made when comparing results with the RF model
presented by A. De Santo and Sperl̀ı (2022) (table 5.1) where the accuracy of the model
presented in this paper is considerably higher than the one from the referenced paper and the
reason behind this is detailed in the feature selection section of this thesis (for this report, the

20
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selection of the features was done based on which attributes are better at indicating failure in
context of classification as opposed to the reference paper where the features were selected
based on their ability to indicate degradation over time leading to failure).

Table 5.1: Model comparison with A. De Santo and Sperl̀ı (2022) on BB dataset

Model Accuracy

Proposed RF model 0.986
Referenced RF model 0.858

More experimentation was performed with training a regression model using the Random
Forest algorithm on the dataset presented in this report (both on the complete version as well
as on a subset containing measurements from specific HDDs of a particular model) and the
results that were obtained were poor and deemed as not relevant for this report as this was
already confirmed in previous works in the field (the initial premise was that it was worth a
try given that previous experiments were performed on smaller datasets specific to one disk
model and maybe if feeding the model more data from more disk models over a longer period
of time would make a difference, it did not).

5.1.2 BiLSTM model

In the case of the BiLSTM model, Table 4.2, the most interesting observation that can be
made is that the model trained on the complete dataset performs best with longer lookback
windows (90 days) which again confirms an initial suspicion that the longer the lookback
window the better the RUL prediction considering that disk drives take a long time to degrade
and ultimately fail.

Another interesting observation that needs to be pointed out is that, as per table 4.3, the
proposed model performed very well (with MAE ¡ 1 and R-squared of 93.8%) on the exact
same dataset used in the reference paper (A. De Santo and Sperl̀ı, 2022) which means that,
if it was possible to replicate their rebalancing step in a practical (easy) way at a later point
in time, better results can be expected when training the model presented in this thesis on
the complete dataset. In the referenced paper, the authors used LSTM to predict RUL by
classifying the health level of HDDs into a number of different classes such as Good, Very
Fair, ... , Alert and achieved excellent results thanks to the rebalancing operations performed
on the dataset containing measurements from a single HDD model - ST4000DM000.

The findings were also compared with the work of A. Coursey and Sengupta (2021) (5.2)
where they predicted RUL using a regression model trained on the last 60 / 120 days before
failure using lookback windows of 5 / 10 / 15 / 30 and where they marked actual RUL greater
than 30 as being 30 for training the model (in other words, a drive which has more than 30
days before failure is a drive in good working order) and where they scaled each feature from
each drive as having a mean of 0 and a variance of 1 (and in doing so lost the ability to apply
the same scaler to the test set since each scale was dependent on the hard drive). Another
experiment was performed where the model presented in this report was trained with more
than 30 lookback windows (45 x 15 day lookback, 60 x 15 day lookback, 90 x 30 day lookback,
120 x 30 day lookback) but due to the poor performance of the model the decision was made
to not include the results in the thesis. A similar result can be observed in table 5.2 for 105
x 15 and 90 x 30 where R-squared dropped considerably compared to 45 x 15 and 30 x 30
which indicates that training the regression model using too many lookback windows does not
perform better.
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Table 5.2: BiLSTM comparison with A. Coursey and Sengupta (2021)

Model Windows MAE MSE RMSE R-Squared

Proposed model 30 x 15 3.941 29.394 5.422 0.655
Referenced model 45 x 15 0.120 - - 0.998
Referenced model 105 x 15 4.874 - - 0.071
Referenced model 30 x 30 0.132 - - 0.998
Referenced model 90 x 30 6.792 - - -0.565

5.2 pRUL

Initially, when setting out to address the problem of predicting the RUL of HDDs, the idea was
to look at measurements collected over the entire lifespan of HDDs and try to predict when
they will fail however after doing research on the topic it was revealed that this is not feasable
at this point in time (the amount of resources and the time available to deliver a solution
were not sufficient) so this problem was approached from a different angle by looking at other,
more realistic, ways of achieving the same goal. By combining the results of the two models
(RF and BiLSTM), the oracle service is able to catalogue drives into good and prefailure at
different timeframes before failure (90 / 60 / 30 / 14 days) and relative to these can then
generate predictions that are more specific with respect to the actual remaining number of
days before failure.

5.3 Significance of the findings

Based on the results shown in this thesis the following statement can be made: at this point
in time, using the state-of-the-art algorithms and methods, the health state of a HDD can be
determined with very good accuracy and precision (with prefailure state marked at 90 or 60
or 30 or 14 days) and also a prediction for its RUL, about how many days are left before the
drive will fail and needs to be replaced, can be provided with a high confidence level and not
only that but this can be done in a practical way thanks to the pRUL technical solution.

5.4 Limitations

As is the case for any technical solution, pRUL has certain limitations, some more obvious
than others. One such limitation is that it relies on S.M.A.R.T. measurements collected over
time (more specifically at regular intervals of time) which means that it can only be used to
predict failure for disks which have this functionality (it cannot predict failure for other storage
media such as USB sticks or DVDs).

Another important limitation is that at this point in time it cannot predict failure for
SSDs or NVMEs due to the fact that there are no publicly available datasets containing
measurements from these types of drives. An improvement can be made at a later point in
time thanks to its ability to collect S.M.A.R.T. measurements in that a model can be built
after collecting enough data from agents deployed on systems that use SSDs provided that
the owners of the systems are willing to share these measurements even though at first they
will not benefit from any useful prediction.

Also, due to the practical nature of the project, there are limitations with respect to
its accuracy, precision and confidence level caused by the severely imbalanced nature of the
dataset which, in theory, can be overcome to some extent by using some balancing techniques
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on the dataset and potentially better ML algorithms or more experimentation, however, this
will come with a high price tag.

Throughout this report it is mentioned that the solution is scalable due to its design,
which is true, however, should the solution be deployed and used at a true global scale (for
example to monitor every HDD and/or SSD on the planet), it would suffer from limitations
such as network bandwidth and latency, availability of compute and storage resources (CPU
cores, RAM, disk space to store all the measurements) and training ML models on massive
amounts of data. This limitation can be overcome by deploying multiple regional independent
instances, each addressing the problem of predicting failure for a portion of the disks which
would also come with a high price tag but would work as this is a model that cloud service
providers use to provide services at global scale (regional functionality).

And, as a closing note, possibly the most important limitation comes from the fact that
the data needed to train the models that predict failure, must come from disks which have
actually failed. Given that the average lifespan of disk drives is measured in years and that
every year new models are released with more storage capacity there is also a chance that this
practical solution becomes obsolete over time as it will only be able to predict failure for older
models of disks which nobody is still making or using. At best it could end up being practical
only for environments where storage resilience is more important than increased capacity or
increased performance (which usually come with newer disk models). In general, before hard
disks are made available to the general public they are tested by disk manufacturers in their
facilities and afterwards in production environments with the help of some of their bigger
customers and in this context it is possible to mitigate this limitation by using the proposed
technical solution to collect measurements at this stage such that once new disk models
become available to the general public pRUL can reliably provide predictions to its users.

5.5 Summary

In this chapter a closer look was taken as the results, they were compared with other works in
the field, limitations of the solution were identified and potential improvements that can be
made and under which circumstances were suggested.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis the state-of-the-art works in the field of evaluating the health level of HDDs
and predicting their remaining useful life using SMART measurements collected over time at
regular intervals were studied and the conclusion that the existing approaches have not yet
produced a practical solution that can be made generally availalbe to consumers was made,
a gap which was filled by creating one such practical application (called pRUL), which is also
the greatest contribution this report brings to this field, that uses a combination of ML models
(one based on RF to classify drives as good or in prefail state and one based on BiLSTM to
predict the actual number of days left before failure).

In the process of creating this technical solution, through experimentation, a few suspicions
were confirmed (one being that a ML model that should classify the state of a HDD needs
to be trained on measurements collected from other drives of same model to achieve high
precision), an observation of the impact the highly imbalanced nature of the dataset has on
the results of the prediction models trained without the extra data preprossesing and balancing
steps taken in other state-of-the-art works and (which were flagged as points of interest for
future work) and a solution, that can indeed classify - with great accuracy and precision -
the state of disks and predict their remaining life in days with a good confidence level, was
delivered.

6.2 Future work

As expected, there are a few key issues that need to be addressed with the most important one
being the highly imbalanced nature of the dataset which impacts the overall performance of
the prediction models. Work needs to be done in order to perform balancing and normalization
operations on the dataset in a practical way (preferably with the help of an automated process
that does not require human intervention) to be able to get the precision of the RF model
to values greater than 95% (while keeping its accuracy at least as high its precision) and to
lower the MAE/MSE/RMSE metrics of the BiLSTM model such that they all are as close to
0 as possible and raise the value of R-squared to as close to 1 as possible (any value above
0.95 would be ideal).

Another important aspect that needs to be addressed in the future is the diversity of
the data on which the models are trained. At this point in time the only publicly available
dataset comes from Backblaze who use only a handful of disk models out of all options
that are available to the public. This is easier said than done however with help from major
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service providers such as telecommunications companies and cloud service providers it can be
achieved. The alternative would be to collect measurements directly from as many end users
as possible (with the help of the pRUL agent). On a related note, a future version of the
proposed technical solution will also be able to cover SSDs and NVMEs as more measurements
are collected from various environments where these devices are in use.

Through experimentation an observation was made which is that the BiLSTM model is
able to predict RUL when trained with longer lookback windows with better results however
what remains unknow is what the limit is (what is the best lookback window?). At the same
time work needs to be done such that RUL can be predicted more accurately using shorter
lookback windows (by using new approaches to tackle the imbalanced nature of the dataset)
such that users don’t need to wait for a long time before they can get an accurate RUL
prediction for their HDDs.



Chapter 7

Reflection

At its core, this work was born from the desire to tackle a problem that’s been around for
a while with storage in general which is that maintenance for disk drives has always been
treated as a reactive operation (when a drive fails it needs to be replaced). Approaching it
from a proactive point of view, where one observes a disk drive over time and based on the
combination of certain SMART attribute values decides to replace a drive at a convenient
time, ideally before it has the potential to cause an incident, has proven to be a good challenge.
Many lessons were learned in the process of writing this thesis such as:

� how to identify good works in the field and what to extract from them

� how to isolate and define a specific problem that one wants to approach

� how to perform experiments, record findings, extract knowledge and identify next steps

� what it takes and how to write a report

� it takes a really long time and effort to train complex machine learning models

� you can’t always reproduce the results and methods found in existing literature

The most difficult challenge faced while working on this thesis (other than the problem
itself) was time, the pressure of meeting the deadline while at same time delivering on the
promise. In this day of age, doing research for the sake of research is a luxury that few can
afford and in this context the solution to the problem had to be shaped into the form of a
smaller result that one can benefit from now rather than wait for a while longer and get a
much better result later.

One particular challenge that was not overcome while working on this report is that of not
being able to produce a method / algorithm that would aid in the data preprocessing stage of
the work in an automated (scripted) / practical way with balancing the dataset. Another one,
caused by the amount of time it takes to train models, is that more experimentation needs to
be done with the BiLSTM model to find what the ideal lookback window should be as well
as how many windows are needed to train a model that can produce excellent results. These
will need to be addressed at a later time, ideally without pressure from deadlines.

The problem, at first, before it became a dissertation project, was formulated, in its
simplified form, ”let’s try to predict disk failure by looking at measurements captured throughout
their entire lifetime”, then, after a bit of research into previous works the problem became
”let’s try to predict disk failure in a practical way” because right now it’s not possible to learn
from their entire lifetime. Both approaches started with the premise that in terms of accuracy
/ precision / confidence I could produce results comparable with state-of-the-art works in the
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field but, as I learned while working on the report, this is also not possible as these works
focused on all sorts of intricate techniques to improve the quality of the data such that the
models generate excellent predictions which are difficult to implement in real world production
environments without hiring highly trained / specialised data scientists.

As a last note, this thesis together with all the work involved in addressing the problem
at hand are publicly available on the Cristian Seceleanu (2023) website.

The short summary version of this chapter would be: ”Challenge accepted!”.
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